Analyzing the Log Patterns of Adult Learners in LMS Using Learning Analytics

Il-Hyun Jo Dongho Kim Meehyun Yoon
Ewha Womans University University of Georgia Ewha Womans University
52 Ewha Rd. 400 River Rd 52 Ewha Rd.
Seoul, 120-750 South Korea Athens, GA 30602 USA Seoul, 120-750 South Korea
+82-(2)-3277-6689 (706) 621-9780 +82-(2)-3277-3201
ijo@ewha.ac.kr dongho@uga.edu meehyun.yoon@gmail.com

ABSTRACT
In this paper, we describe a process of constructing proxy variables that represent adult learners’ time management strategies in an online course. Based upon previous research, three values were selected from a data set. According to the result of empirical validation, an (ir)regularity of the learning interval was proven to be correlated with and predict learning performance. As indicated in previous research, regularity of learning is a strong indicator to explain learners’ consistent endeavors. This study demonstrates the possibility of using learning analytics to address a learner’s specific competence on the basis of a theoretical background. Implications for the learning analytics field seeking a pedagogical theory-driven approach are discussed.

Categories and Subject Descriptors
K.3.1 [Computer and Education]: Computer Uses in Education -Distance Education

General Terms
Measurement, Human Factors.

Keywords
Learning Analytics, Big-data mining, Log data, Time Management Strategy, Adult Education.

1. INTRODUCTION
There are high demands within e-learning for adult learners. Over the past years, there have been an increase in online course enrollment among adult learners in order to obtain knowledge or develop professional skills [6, 17, 38]. However, difficulties have also been posed by adult learners in taking online courses due to their lack of time management skills [22].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

LAK ’14, March 24 - 28 2014, Indianapolis, IN, USA
Copyright 2014 ACM 978-1-4503-2664-3/14/03…$15.00.
http://dx.doi.org/10.1145/2567574.2567616

Time management strategies are increasingly required in the context of adult learning because they are usually involved in both their study and job at the same time; therefore, a successful completion of an online course depends on the efficient use of a given amount of time. To a considerable degree, it is reported that failure in an online course for adult learners results from poor time management [11, 19].

By analyzing adult learners’ online activity based on educational data mining, instructors can detect the status of their learning processes in an earlier stage. Given that most activities of learners enrolled in online courses occur in a Learning Management System (LMS), utilizing the log data within the LMS could provide crucial insight into the learning analytics field. If we can distinguish the learning patterns in the early stage of an online course, it will be conducive to encouraging or guiding learners by providing them with an appropriate instructional intervention [4].

Log data, which is saved as an unstructured data set, contains users’ log information within online systems, and it can be used to represent how the learning processes occur on the web throughout the login duration. Furthermore, this information might be more genuine when compared to the data from surveys, which rely highly on learners’ recall and subjective interpretations; thus, we do not have to consider the possibility of distortion or low reliability [1, 12]. However, log data alone cannot be transferred to the learning processes without a sophisticated interpretation in regards to theoretical aspects. Our contribution is to suggest an effective way to convert users’ log data into predictive indicators of learning performance based on theoretical background.

The focuses of this study are twofold. First, we elicit “candidates for proxy variables” from the log data set that represent learners’ time management strategies as conceptual constructs which have long been considered to be a vital factor to their performances[2, 26, 31, 34, 42]. Second, we determine whether the elicited proxy variables predict learner performance in terms of verifying the empirical validity. If so, the proxy variables can be used to detect the status of learners’ time management and predict performance in other data sets from similar contexts.

2. PROXY VARIABLES TO REPRESENT TIME MANAGEMENT STRATEGY IN LMS
Converting a gigantic data set into proxy variables involves the following steps (see Fig. 1). First, the targeted conceptual construct should be discussed based on previous research. Theories addressed in previous research should dictate the manipulation of data; further, necessary values, such as learning
time range, clicking point, login and logout time calculated from data set, are selected in order to be used as the construct variables. Then, proxy variables are elicited through the process. In essence, by considering the theoretical aspect, we can determine what should be included from the manipulated values.

The proxy variable, which is not identical to the targeted conceptual construct but is optimally processed, can be applied to other data sets. In this study, three variables are chosen on the basis of previous studies.

Fig. 2 presents the relationship between each potential proxy variable and sub-element of the time management strategy as a targeted conceptual construct. As learners are required to invest their time on their study in order to obtain an expected score for completing the course while still having to work, the amount of the total login time and the login frequency is regarded, to some extent, as prioritization of the course over their work. The assumption is in accordance with previous studies, which regard time management as a technique for having sufficient time to accomplish the required tasks [33, 39]. Likewise, the relationship between regularity of login interval and prioritizing tasks can be posited if we consider that learners who value the course are likely to access the LMS regularly in order to obtain updated information as well as not to get left behind.

2.2 Total login time

The degree to which learners invest their time has been recognized as a powerful factor correlative with performance; moreover, much research has reported a strong relationship existent between the total studying time and performance [37].

In this study, “total studying time” is represented by the term “total login time,” to measure the actual learning time. To support the significance of the variable, Cotton and Savard’s conception of learning time was adopted [7] (see Fig. 3). In the study, learning time can be categorized into three parts: Allocated Time (AT), Time-on-Task (TOT) and Academic learning time (ALT); this conception is illustrated as follows.

Fig. 3. Three types of studying time

In this study, the author argued that the three different types of time mentioned above are significantly correlated with learning performance. Of course, it is hard to regard login time as genuine academic learning time because merely logging into LMS does not necessarily denote meaningful learning in itself. However, we can easily assume that recorded login time belongs with the allocated time or time-on-task when considering that the greatest proportion of learning-related activities occur within LMS, such as observing lectures, gathering information, interacting with peers or submitting assignments.

Therefore, we decided to use the login time to construct the proxy variable as an indicator standing for the allocated time, which is an extended concept in which two other types of time are inherent.

2.3 Login frequency

How frequently learners participate in an online course has been regarded as an important factor that predicts higher levels of performance. Piccoli, Ahmad, and Ives [30] reported that learners’ login frequency into LMS is highly correlated with course satisfaction in online learning. Davies and Graff [8] argued that participation frequency within online activities is significantly associated with their grades. Kang, Kim, and Park [20] demonstrated that total login frequency into LMS is directly connected with not only learning performance, but also attendance rate.

In this study, we assume that the more frequently learners log into LMS, the more newly updated and shared information they
shall obtain, which is a factor that leads to their better understanding of the learning content as well as what they must prepare for classes. The login frequency was calculated by adding up the number of individual student’s login time into LMS.

In this study, we assume that the more frequently learners log into LMS, the more newly updated and shared information they shall obtain, a factor which shall lead to their better understanding of learning content and of what they must prepare for classes.

2.4 (Ir)regularity of learning interval

Regularity of learning is defined as the extent to which learners regularly engage in learning, and has been recognized as one of the time management strategies [10]. Many researchers have found that the regularity of learning positively predicts learning performance [28, 35].

In this study, data is calculated into a standard deviation of the login interval. Thus, it basically indicates the “irregularity of learning interval.” To be specific, in the following (see Fig. 4), the gap between A and B indicates the total course period, and \(\Delta t_{i-2} \) is an interval between the first and second login time calculated by subtracting \(t_1 \) from \(t_2 \). In the same way, we can obtain nth, the interval which is presented as \(\Delta t_{n-1} \). Consequently, the mean of the learner’s login interval can be calculated, and the standard deviation is subsequently elicited from the mean, as indicated in Fig. 5.

![Figure 4. Concept of learning interval](image)

Figure 4. Concept of learning interval

\[
\text{Mean of learning interval: } \overline{\Delta t} = \frac{\sum_{i=1}^{n-1} \Delta t_i}{n}
\]

\[
\text{Standard deviation of learning interval: } s_\Delta = \sqrt{\frac{\sum_{i=1}^{n-1} (t_i - \overline{\Delta t})^2}{n-1}}
\]

![Figure 5. Calculation of mean and standard deviation of learning interval](image)

Figure 5. Calculation of mean and standard deviation of learning interval

3. RESEARCH QUESTIONS

The specific research questions are as follows.

R1: How can candidates for proxy variables regarding the learners’ time management strategy be elicited from log data?

R2: Do the suggested variables (total login time, login frequency and regularity of login interval) predict adult learners’ performance?

4. ANALYSIS AND RESULTS

4.1 Participants and research context

The participants in this study consisted of 200 adult learners enrolled in a commercial e-learning course entitled “Credit Derivative” administered by a Korean e-learning company. All participants were engaged in the financial business field as their full-time job. This course is operated 100% online over a month.

At the end of the course, all participants were required to take a test.

4.2 Measures and Variables

4.2.1 Suggested independent variables

Log data was collected from the LMS by an automatic collection module embedded within the system. The Total login time, Login frequency and (ir)regularity of learning interval were extracted as independent variables.

4.2.2 Dependent variable

Learning performance, a dependent variable in this study, is defined as a score of the final test, which consisted of 20 multiple choice items. The scores from each question were collected and added together in order to obtain the total score. The total score was graded on a scale of one hundred points.

Table 2. Means, standard deviations of variables (n=200)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total login time (hour)</td>
<td>38.18</td>
<td>14.46</td>
</tr>
<tr>
<td>Login frequency</td>
<td>46.31</td>
<td>12.56</td>
</tr>
<tr>
<td>(Ir)regularity of learning interval</td>
<td>2.92</td>
<td>2.05</td>
</tr>
<tr>
<td>Learning performance</td>
<td>77.92</td>
<td>15.09</td>
</tr>
</tbody>
</table>

4.3 Multiple Linear Regression Analysis

A multiple regression analysis was conducted in order to determine whether the three suggested values, which serve as proxy indicators of time management strategy, predict learning performance. The results are presented in Table 3.

It is shown that the suggested three variables account for 20.8% of the variance in learning performance (\(F=36.267, p < .01 \)).

Of these three proxy variables, only (ir)regularity of learning interval was found to predict learning performance (\(B=-4.343, t=-10.115, p < .01 \)).

Table 4. Results of multiple linear regression analysis

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized B</th>
<th>Standard Error</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(constant)</td>
<td>88.772</td>
<td>4.511</td>
<td></td>
<td>19.680</td>
<td>.000</td>
</tr>
<tr>
<td>Total studying time</td>
<td>-0.002</td>
<td>.060</td>
<td>-0.002</td>
<td>-0.034</td>
<td>.973</td>
</tr>
<tr>
<td>Total login frequency</td>
<td>.041</td>
<td>.070</td>
<td>.034</td>
<td>.586</td>
<td>.559</td>
</tr>
<tr>
<td>(Ir)regularity of learning interval</td>
<td>-4.343</td>
<td>.429</td>
<td>-0.590</td>
<td>-10.115</td>
<td>.000</td>
</tr>
</tbody>
</table>

\(R^2 \) (adj. \(R^2 \) = .597 (.347), \(F=36.267, p = .000 \)

a. Dependent Variable: Final grade
5. DISCUSSION
The result reveals that only the (ir)regularity of learning interval factor is proven to predict learning performance.

Indeed, some of the research reported a limited relation between studying time and learning performance. Ha and colleagues [14], insisted that total studying time is not related to learning performance, and Lee [23] highlighted the fact that learning performance can be increased only when learners are fully concentrated on what they do, regardless of the total amount of available time. Similarly, login frequency cannot fully explain learners’ meaningful learning. Although learners access LMS frequently, learners’ actual studying time might be relatively short. It is also likely that they intensively log into LMS at a certain point rather than constantly participating in academic activities. Such a tendency has been reported to hinder well-planned learning, resulting in either procrastination or a lack of effective time use [16].

The regularity of the learning interval, meanwhile, can provide critical evidence as to the fact that learners who more steadily log into LMS from the beginning of a study to the end show better performance. This involves neither a temporal access at a certain point nor merely a long visit but rather a well-intended and conscious learning over a relatively long term. As a matter of fact, several articles recognize regular participation as a vital key to success in learning [3, 25, 26, 41]. Given that the time management strategy has been considered to involve the learner’s self-regulation, long-term planning and sustaining efforts, the regularity of learning is expected to be a strong indicator of time management strategy.

6. CONCLUSION
This study has made a contribution to learning analytics, within the context of an adult learner’s time management strategy which has been considered to be an essential factor for successful learning in andragogy [5].

This study shows a process of converting complex log patterns into elaborated “proxy variables” based on both a ripe theoretical foundation and well-intended manipulation. It demonstrates a possibility of further research regarding the formation of more sophisticated proxy variables that represent certain conceptual constructs drawn from an enormous database. Until now, much research in the learning analytics field has been conducted in a data-driven way and frequently with scarce theoretical background [13]. Recently, however, the learning analytics field has constantly maintained its emphasis on the learning and teaching areas as well in contrast to its strong root as a data-driven approach [40]. The social and pedagogical usage of learning analytics is being actively discussed now, as researchers search to define it as a separate field by which to improve learning opportunities away from business area [13, 24]. Along this line, an abundant theoretical foundation is required for the extensive application of research findings into the real world context.

This study has limitations as well. We could not track the specific time use of the learners. With log data which better mapped a variety of time use on different menus and web pages, a more accurate analysis to catch real studying time could have been made possible. If we can track the learner’s specific time use in LMS and thus extract actual studying time from log data at every moment, it would be possible to more clearly investigate the relationship between genuine studying time and learning performance.

7. REFERENCES